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BV and BFV

Both the (classical) BV and BFV formalism are described in
terms of a solution of the classical master equation (CME)
{S,S} = 0, where S and { , } have opposite parity:

BV S even and of ghost number 0, { , } odd and of
ghost number 1

BFV S odd and of ghost number 1, { , } even and of
ghost number 0

In both cases, the BRST operator Q := {S, } is odd and of ghost
number 1.P
Other degrees may be considered. For example, multivector
fields on a manifold M, i.e., sections of Λ•TM (duals of differential
forms), have a natural odd bracket of degree −1 extending the
Lie bracket of vector fields: the Schouten–Nijenhuis bracket.
To get Q as above, S must now be even and of degree 2: a
bivector field. It will solve the classical master equation iff it is a
Poisson bivector field on M.
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Some recollections

The CME in BV is an approximation of the quantum master
equation (QME)

∆e
i
~ S = 0

or equivalently
1
2

(S,S)− i~∆S = 0,

where ∆ is the BV Laplacian. P
The integral of e

i
~ S on a "Lagrangian submanifold of the BV

space" (gauge fixing) is invariant under deformations.P
The BFV action contains information about first-class constraints
(a coisotropic submanifold) of some symplectic manifold. PIn the
regular case, the cohomology of Q in ghost number zero yields
the Poisson algebra of functions of the symplectic reduction

{zero locus of the constraints}/{their Hamiltonian vector fields}

This is, e.g., the reduced phase space in the Hamiltonian
formulation of a field theory.
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Differential graded symplectic description

We prefer using a symplectic structure instead of the induced
Poisson bracket.
Our general data will be

a symplectic structure ω of ghost number n − 1
an "action" S of ghost number n
a vector field Q of ghost number 1 satisfying

ιQω = dS

with parities equal to ghost number modulo 2.P
The classical master equation implies

[Q,Q] = 0

and is equivalent to it for n 6= −1. Such a vector field is called a
cohomological vector field. P
We call the above collection of data a BFnV structure.
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Examples of BFnV structures

There are three important particular cases:
n = 0 This is the Batalin–Vilkovisky (BV) formalism used in

QFT. P
n = 1 This is the Batalin–Fradkin–Vilkovisky (BFV) formalism

used to give a cohomological resolution of symplectic
reduction.P

n = 2 If there are only coordinates of nonnegative degree,
this is a Poisson structure.P
More generally, it describes Poisson structures up to
homotopy (i.e., the Poisson bracket is an
L∞-structure).P

Poisson∞ = BF2V
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Example: gauge theories

Suppose we have a gauge theory with space of fields FM , a local
action functional S0

M and a gauge group acting on it.
We denote by φ the fields, by c the ghosts and by δBRST the
BRST operator. We assign degrees by |φ| = 0 and |c| = 1.
We introduce antifields φ+, c+ with opposite parity than the field
and degrees given by |φ+| = −1 and |c+| = −2.
We denote by FM the space of all the (φ, c, φ+, c+)’s and we set

SM = S0
M(φ) +

∫
M

(φ+ δBRSTφ+ c+ δBRSTc),

ωM =

∫
M

(δφ+δφ+ δc+δc)P

Then, if ∂M = ∅, the BV action S satisfies the CME. P
One usually considers these “BRST-like” theories, but there are
more general examples.
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Relaxed structures

Suppose we have a graded manifold M with a cohomological
vector field Q, a function S of degree n ≥ 0 and a closed 2-form
ω of degree n − 1. PWe set

α̌ := ιQω − dS

and
ω̌ := dα̌ = −LQ ω

It turns out that ω̌ is a closed, Q-invariant 2-form of degree n. P
We denote by M the quotient of M by the kernel of ω̌ (assume it
is smooth). We denote by ω its symplectic form of degree n.
It turns out that Q is projectable to a cohomological vector field
Q, which is automatically Hamiltonian (ιQω = dS). Therefore,

M becomes a BFn+1V manifold. P
If α̌ also descends to M, we have ω = dα and the modified
classical master equation (mCME)

ιQω = dS + π∗α
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Field theory

Suppose that M is a space of fields on some closed manifold Σ.
P
Suppose we have a BFnV structure on M with ω, Q, and S local.
This allows us to write ω, Q, and S also on some Σ with
boundary.P
If S contains derivatives of the fields, there will be boundary
terms that spoil the structure.
This relaxed structure will however induce a BFn+1V structure on
the fields on ∂Σ (the kernel of ω̌ contains in particular fields in the
bulk).
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An application

Example n = 0. On Σ we have a (relaxed) BV structure
describing the symmetry content of some field theory. On ∂Σ we
have a BFV structure describing its reduced phase space
(possibly up to homotopy).
Example n = 1. On Σ we have a (relaxed) BFV structure
describing the reduced phase space of some field theory. On ∂Σ
we have a BF2V structure describing a Poisson structure
(possibly up to homotopy): the “current algebra” of the theory.P
Under some regularity assumptions, all this is compatible with
cutting and gluing of space–times manifolds with corners. P
In several cases, it is also possible to quantize these pictures.
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Example: Chern–Simons theory

Let Σ be a 2-manifold and g a quadratic Lie algebra.
Let N be the space of g-valued 1-forms A (connections) on Σ
with the Atiyah–Bott symplectic structure ω = 1

2

∫
Σ
δAδA.P

We let C denote the space of flat connections. Then C turns out
to be the quotient by gauge transformations.P
BFV: M = N × T ∗(Ω0(Σ, g)[1]) and

S =

∫
Σ

(c,FA) +
1
2

(b, [c, c])P

On ∂Σ we get ω =
∫
∂Σ
δAδc,

S =
1
2

∫
∂Σ

cdAc

We can interpret this as an affine Poisson structure on Ω1(Σ, g),
which we may regard as the dual of the affine Lie algebra
ĝ = Ω0(Σ, g)⊕ R. P
This may be generalized to other field theories: e.g., 4d gravity.
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BFV-BF2V

Quantization of the example n = 1

If ∂Σ = ∅, we expect to get a vector space H by geometric
quantization of M together with a coboundary operator Ω
quantizing S. Its cohomology in degree zero describes a
quantization of the reduced phase space.P
If ∂Σ 6= ∅, we expect H to be a representation of a quantization
of M.P
For example, we may consider the deformation quantization ot
the Poisson structure described by M.P
If Σ = Σ1 ∪D Σ2 with D a common boundary component for Σ1
and Σ2, we expect H for Σ to be recovered as the tensor product
of the Hs for Σ1 and Σ2 over the algebra associated to D.
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BV-BFV

Quantization of the example n = 0

Notation:
F = M, the BV space of bulk field with data (ω,S,Q)
F∂ = M, the BFV space of boundary fields with data (ω∂ ,S∂ ,Q∂) P

In this case, we expect to get a vector space H by geometric
quantization of F∂ together with a coboundary operator Ω

quantizing S∂ . We expect the gauge fixed integral of e
i
~ S to yield

an Ω-closed state (defined up to Ω-exact terms).P
If Σ = Σ1 ∪D Σ2 with D a common boundary component for Σ1
and Σ2, we expect the state for Σ to be recovered as the pairing
of the states for Σ1 and Σ2 in the Hilbert space associated to D.
P
We produced a rather general construction, which relies on the
existence of a “nice” polarization of M. The construction also
keeps track of “residual fields" (e.g., zero modes).P
Main assumption ω∂ = dω∂ .
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The polarization

Assume we have an involutive Lagrangian distribution P on F∂ ,
called a polarization, such that the restriction of α∂ to its leaves is
zero. We may use gauge transformations to adapt α∂ .
For simplicity we assume B := F∂/P to be smooth. P
The crucial assumption now is that we have a splitting

F = Y×B

such that the BV form ω only has components along Y and is
constant on B. (A splitting is always possible locally; the crucial
condition is on ω.)

Remark
In the infinite dimensional case (e.g., in field theory), it is possible to
have a nondegenerate ω with this property. In the finite-dimensional
case (e.g., in a discretized field theory), ω is then necessarily
degenerate, but we still require it to be nondegenerate on Y, which is
enough to define BV integration.
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The modified quantum master equation I

Using the splitting, we rewrite the mCME as (we no longer write π∗)

δYS = ιQY
ω

δBS = −α∂P

The two equations imply

1
2

(S,S)Y =
1
2
ιQY

ιQY
ω = S∂ (∗)P

Now assume we have adapted Darboux coordinates (b,p) on F∂ with
b on B, p on the leaves and α∂ = −

∑
p δb. Then the second

equation implies
δS
δb

= p (∗∗)

This means that, in this splitting, S is linear in the b’s.
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The modified quantum master equation II

We now assume that S also solves the equation

∆YS = 0

Remark
Without boundary this means that we assume that S solves both the
classical and the quantum master equation. With boundary, ∆ makes
sense only on the Y-factor. We will return on this. P

We then have

∆Ye
i
~ S =

(
i
~

)2 1
2

(S,S)Y e
i
~ S

and equation (*) implies

−~2∆Ye
i
~ S = S∂e

i
~ S (†)
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The modified quantum master equation III

We now move to the quantization. We take H to be an appropriate
space of functions on B.
Equation (**) essentially says that

p̂S = −i~p with p̂ = −i~
δ

δb
P

Remark
Here S is an element of H parametrized by Y. The p appearing in the
equation is now an element of Y. P

If we quantize S∂ by the Schrödinger prescription

Ω := S∂

(
b,−i~

δ

δb

)
with all derivatives placed to the right, we get

Ωe
i
~ S = S∂ e

i
~ S (‡)
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The modified quantum master equation IV

Putting (†) and (‡) together we finally get the modified quantum
master equation (mQME)

(~2∆Y + Ω)e
i
~ S = 0 P

Remark
The assumption ∆YS = 0 is not really necessary (and is often not
justified). More generally, we have

∆Ye
i
~ S =

((
i
~

)
∆YS +

(
i
~

)2 1
2

(S,S)Y

)
e

i
~ S

If we define

S∂
~ :=

1
2

(S,S)Y − i~∆YS = S∂ + O(~)

and Ω as the Schrödinger quantization of S∂
~ , we recover the mQME.
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The modified quantum master equation V

By construction we have

∆2
Y = 0 [∆Y,Ω] = 0

The operator
ΩY := ~2∆Y + Ω

appearing in the mQME then squares to zero iff

Ω2 = 0

The existence of a splitting such that this holds is a fundamental
condition (absence of anomalies) which allows passing to the
ΩY-cohomology. Cohomology in degree zero describes
Y-parametrized physical states.
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The quantum state

Assume the mQME
ΩYe

i
~ S = 0

Suppose Y = Y′ × Y′′ (possibly Y′ a point).
Pick a Lagrangian submanifold L of Y′′.
Define

ψ :=

∫
L

e
i
~ S ∈ H ⊗ C∞(Y′)P

Then
1 We have the induced mQME

ΩY′ψ = 0

2 Changing the “gauge fixing” L changes ψ by an ΩY′ -exact term. P

Hence ψ defines a ΩY′ -cohomology class (of degree 0).
We might iterate this procedure (“Wilson renormalization with
boundary”) and eventually arrive at Y′ a point. In this case, ψ will
be an Ω-cohomology class of degree zero on H: a physical state.
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Some results

With Mnëv and Reshetikhin, we have applied the general
formalism for the abelian BF theories, obtaining the state for
every manifold with boundary and proving the gluing properties.P
By perturbing abelian BF theory, we have extended the
construction to other theories like

1 Quantum mechanics and topological quantum mechanics
2 Split Chern–Simons theory (also with Mnëv and Wernli)
3 2D Yang–Mills theory (developed in full details by Mnev and Iraso)
4 Poisson sigma model (also with Moshayedi and Wernli)P

In the last example, one can e.g. recover the associativity of
Kontsevich’s star product from the composition of states.P
2D Yang–Mills theory has been studied also for manifolds with
corners. This way, one may recover the full nonperturbative
results out of the perturbative expansions.
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Final remarks

Other theories like scalar field, spinor field, Yang–Mills can be
treated alike (but one has to take renormalization into account).
The case of 2d scalar fields has been recently studied in full
detail by Kandel, Mnëv and Wernli. P
Classical BV-BFV gravity theories (in the Einstein–Hilbert as well
as in the Palatini–Cartan version) have also been studied.P
A discretized version of nonabelian BF theory has also been
studied: in this setting, all spaces are finite dimensional and all
the quantum BV-BFV results are rigorous from the start. P
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Thanks
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